Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959330

RESUMO

A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.

2.
Antioxidants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365615

RESUMO

The purpose of this work was the optimization of the extraction from spent coffee grounds, specifically 100% Arabica coffee blends, using a desirability approach. Spent coffees were recovered after the preparation of the espresso coffee under the typical conditions used in coffee bars with a professional machine. Spent coffee was subjected to different extraction procedures in water: by changing the extraction temperature (60, 80, or 100 °C) and the solvent extraction volume (10, 20, 30 mL for 1 gram of coffee) and by maintaining constant the extraction time (30 minutes). The ranges of the process parameters, as well as the solvent to be used, were established by running preliminary experiments not reported here. The variables of interest for the experimental screening design were the content of caffeine, trigonelline, and nicotinic acid, quantitatively determined from regression lines of standard solutions of known concentrations by a validated HPLC-VWD method. Since solvent extraction volumes and temperatures were revealed to be the most significant process variables, for the optimization of the extraction process, an approach based on Response Surface Methodology (RSM) was considered. In particular, a Box-Wilson Central Composite Design, commonly named central composite design (CCD), was used to find the optimal conditions of the extraction process. Moreover, the desirability approach was then applied to maximize the extraction efficiency by searching the optimal values (or at least the best compromise solution) for all three response variables simultaneously. Successively, the best extract, obtained in a volume of 20 mL of water at an extraction temperature of 80 °C, was analyzed for total phenol content (TPC) through the Folin-Ciocalteu assay, and the antioxidant capacities (AC) through the trolox equivalent (TE) antioxidant capacity (DPPH), ferric-ion reducing antioxidant parameter (FRAP), and radical cation scavenging activity and reducing power (ABTS). The TPC and the AC for spent coffee were high and comparable to the results obtained in previous similar studies. Then, the extract was evaluated by inductively coupled plasma mass spectrometry (ICP-MS), revealing that potassium was the most abundant element, followed by phosphorus, magnesium, calcium, sodium, and sulfur, while very low content in heavy metals was observed. Preliminary in vitro assays in keratinocyte HaCaT cells were carried out to assess the safety, in terms of cytotoxicity of spent coffee, and results showed that cell viability depends on the extract concentration: cell viability is unmodified up to a concentration of 0.3 mg/mL, over which it becomes cytotoxic for the cells. Spent coffee extract at 0.03 and 0.3 mg/mL showed the ability to reduce intracellular reactive oxygen species formation induced by hydrogen peroxide in HaCaT cells, suggesting its antioxidant activity at intracellular levels.

3.
Eur J Pharm Biopharm ; 122: 6-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986297

RESUMO

The aim of this work was to develop an innovative drug delivery system potentially useful for the local delivery of Bisphosphonates to bone tissue. We propose the use of Solid Lipid Microparticles (MPs), up to now mainly used for oral and topical drug delivery, as carrier for bisphosphonates due to the favourable biocompatibility and lower toxicity of the lipids compared with many polymers. The delivery platform consisted of a biomimetic α-tricalcium phosphate-gelatin cement (CPC) enriched with alendronate loaded MPs (MPs-AL) produced by the spray congealing technology. Alendronate direct addition to cement composition is limited since Alendronate is able to sequester calcium from calcium phosphates, thus preventing the setting of the cements. At variance, this approach permitted to load a relatively high amount of the drug on the CPC and allowed the controlled release of the highly water soluble alendronate. A Design of Experiment (DoE) was employed for the screening of the effects of the formulation variables related to the presence of unloaded microparticle (MPs) on the cement most important mechanical properties. Then, MPs loaded with 10% w/w of alendronate were produced using five different carriers (Stearic Acid, Stearilic Alcohol, Cutina HR, Tristearin and Precirol ATO5). All MPs-AL exhibited a spherical shape, encapsulation efficiency higher than 90% and prevalent particle size ranging from 100 to 150µm. Solid state characterization (DSC, HSM and X-ray powder diffraction) demonstrated that encapsulation of alendronate into MPs did not alter its crystal structure. MPs-AL addition to the cement provoked a modest lengthening of the setting times and of the hardening reaction leading to the complete transformation of α-tricalcium phosphate into calcium-deficient hydroxyapatite, without significantly affect the cement mechanical properties. Moreover, the results of in vitro AL release study performed on cements enriched with MPs-AL showed that the system allows a controlled release of the drug over time.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Difosfonatos/química , Lipídeos/química , Alendronato/química , Materiais Biocompatíveis/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Polímeros/química , Difração de Raios X/métodos
4.
Rapid Commun Mass Spectrom ; 17(2): 140-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12512093

RESUMO

It is well known that proteins and peptides play an important role in the flavour of roasted coffee, but little is reported in the literature about their characterization. In view of the potential of matrix-assisted laser desorption/ionization mass spectrometry in the analysis of proteins in complex mixtures, two varieties of coffee green beans, Arabicas and Robustas, were analyzed by this technique, in order to obtain fingerprints of their native proteins. Differences were observed between Arabicas and Robustas green beans, and cluster analysis allows differentiation of samples of the same variety from different plantations.


Assuntos
Café/química , Café/classificação , Proteínas de Plantas/análise , Sementes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , África , Ásia , Filogenia , Proteínas de Plantas/química , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...